

Count On
 Start with the larger number and count up.

Use when adding 1, 2, or 3 .
$+1+2+3$
Making Ten
There are number pairs that make 10.
Ten Partners

$$
10+0 \quad 9+1 \quad 8+2 \quad 7+3 \quad 6+4 \quad 5+5
$$

Adding a number to itself makes a double.

Doubles

+1 and +2
Near Doubles

Plus 10
Double the number and add one or two more.
If you know $5+5=10$, then $5+7$ is two more, or 12
When 10 is added to a number, the tens-place digit increases by one.

$$
23+10=33
$$

Decompose the other addend to add one to the 9.

Plus 9

See 9. Make 10.
("Need one more, look next door")
$15+9$. Think $14+10$
Decompose the other addend to add two to the 8.
Plus 8
See 8. Make 10.
("Need two more, look next door")
$14+8$. Think $12+10$
Decompose the smaller number into parts so that you can add up to create a 10 .

$$
28+6=28+(2+4)=30+4=34
$$

Commutative Order doesn't matter when adding.
Property

$$
8+3=\|\quad 3+8=\|
$$

Turn Arounds
Traditional
Algorithm
Stack the numbers lining up the digits according to place value. Add the 1 s first, regroup if needed, continue with

Subtraction Strategies
 minuend subtrahend difference
 $$
9-7=2
$$

Start with the larger number and count back.
Use when subtracting 1, 2, or 3
Count the steps from the subtrahend to the minuend to get the

To subtract, think of the related addition fact.
Think Addition

$$
15-8=? \text { think } 8+?=15
$$

If you know the addition Ten Partners, then you know the related
Ten Partners subtraction facts.

$$
7+3=10 \text { so } 10-3=7
$$

If you know the double fact then you know the related subtraction fact.

$$
6+6=12 \text { so } 12-6=6
$$

When 10 is subtracted from a number, the tens-place digit decreases
by one. $\quad 23-10=13$

Minus 9
Think of the number as a 10 and then add one.
15-9. Think $15-10+1$
See 9. Think 10.

Minus 8

Think of the number as a 10 and then add two.
See 8. Think 10.
27-8. Think $27-10+2$
Decompose the subtrahend into smaller parts so that you can
Subtract in
Small Steps

Constant
Difference
Compensation
Traditional
Algorithm
subtract to a 10 or a multiple of 10.
24-7. Think splitting 7 into 4 and 3 first. Then $24-4=20$ then $20-3=17$

Add or subtract the same amount to both the minuend and the subtrahend to make the problem easier to solve.

$$
43-25=43(+5)-25(+5)=48-30
$$

Stack the numbers lining up the digits according to place value. Subtract the 1s first, regroup if needed, continue with the 10 s and so on.

Multiplication Strategies $8 \times \stackrel{1}{4}=32$

Twos Multiplying by 2 is doubling the number.
Doubles
2×7. Think double 7. Think $7+7$
Multiplying by 10 increases a number tenfold.
Tens Think ten-frames and base ten blocks.

$$
10 \times 2=20
$$

Fives Think skip counting by 5's or think half of multiplying by 10.

$$
5 \times 2=10
$$

Ones Multiplying by 1 equals the number because it is 1 group.

$$
6 \times 1=6
$$

Zeros If you multiply a number by 0 the product is always 0 .

$$
9 \times 0=0
$$

Threes

Multiplying by 3 can be thought of as doubling the number and then adding 1 more group, or as tripling the number.
4×3. Think 4×2 and add one more group of 4.

∞	Fours
$\stackrel{\infty}{\bar{s}}$	$\begin{array}{l}\text { Double } \\ \bar{z} \\ \\ \\ \\ \end{array}$ Double

Double the number, and then double it again.
4×7. Think $(2 \times 7)+(2 \times 7)$
Sixes Multiplying by 6 can be thought of as doubling a multiple of 3 .
6×7. Think $(3 \times 7)+(3 \times 7)$
Nines Think of the 9 as a 10, then subtract one group.
See 9.
Think 10.
8×9. Think $8 \times 10-8$
Think 10.
Multiplying by 8 is double multiplying by 4 .
$\begin{aligned} & \text { Double } \\ & \text { Double }\end{aligned} \quad 7 \times 8$. Think $(7 \times 2)+(7 \times 2)+(7 \times 2)+(7 \times 2)$ or $(7 \times 4)+(7 \times 4)$
Double
Sevens Decompose the 7 and multiply in smaller steps (Distributive Property)
Multiplying
Small Steps
4×7. Think $(4 \times 2)+(4 \times 5)$
Commutative Order doesn't matter when multiplying.
Property
$4 \times 6=24$ and $6 \times 4=24$

Division Strategies
dividend divisor quotient

$$
8 \div 4=2
$$

0 divided by any number is 0 . If there are no groups there is nothing
Division by 0
to divide.
$0 \div 9=0$
A Number Divided by Itself

$$
5 \div 5=1 \quad 65 \div 65=1
$$

A dividend divided by 1 equals the number.

$$
9 \div 1=9 \quad 204 \div 1=204
$$

A dividend divided by 2 is half. Use double facts to solve.

$$
8 \div 2=4
$$

Use multiplication to solve division problems.

Think

Multiplication
A number divided by itself is 1 .

Division by 1

Half
Divided by 2

$$
27 \div 9=? \text { Think } 9 \times ?=27
$$

Halve the dividend, double the quotient.
Half and
Double
$64 \div 4$. Think half of 64 is 32 , So $32 \div 4=8$. Then double the quotient (8). $8 \times 2=16$.

Divide in Small Steps

Factor the Divisor
Compensation

Decompose the divisor into smaller parts (factors) so that you can make the problem easier to solve.

$$
54 \div 18 \text {. Think } 54 \div 6 \div 3=9 \div 3=3
$$

Multiply or divide the dividend and the divisor by the same number to make the problem easier to solve.

$$
48 \div 12=(48 \div 4) \div(12 \div 4)=12 \div 3
$$

Cancel Zeros
Dividing by a
Multiple of 10 First

Remove the same number of zeroes from the end of both the dividend and the divisor.

$$
360 \div 60 . \text { Think } 36 \div 6
$$

